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ABSTRACT
Starting from the 3D linearized Euler equations and decomposing the 3D perturbation quantities into a

Fourier series in the azimuthal direction, a set of 2.5D linearized disturbance equations is derived which are
valid for each azimuthal mode of fluctuation. The derivation is based on an axisymmetric mean flow and ax-
isymmetric acoustic boundary conditions. A Computational Aeroacoustics (CAA) approach is applied to solve
the 2.5D equation system. A fourth-order Dispersion-Relation-Preserving finite difference scheme is imple-
mented for spatial discretization, whereas a 2N storage form Low Dissipation and Low Dispersion Runge-Kutta
scheme is applied for time integration. Appropriate boundary conditions are prescribed at different boundary
regions. The numerical procedure is firstly validated by a straight circular pipe and a straight annular duct
subjected on subsonic uniform mean flows. Numerical results show very good agreement with the analytical
solutions. Further numerical example is presented for an axisymmetric duct inlet with an aero-engine like ge-
ometry including a spinner inside. The aeroacoustic computation is based on an inviscid mean flow calculated
by a 2nd order CFD solver. The CAA solutions agree rather well with the finite element results of Eversman as
well as the semi-analytical multiple-scales solutions of Rienstra. In particular, a cut-on cut-off transition case
has been simulated. This reveals the feasibility of the proposed theory and solution procedure.

INTRODUCTION

Fan noise is known as the dominant noise component of
modern high bypass ratio aero-engines. To accurately eval-
uate the sound propagation in an aeroengine inlet and its
far field radiation, the prediction methods are required
to be capable of handling complex geometry, including
the spinners cross section and accounting for basic mean
flow effects. In general, fully three dimensional numeri-
cal methods are required for the description of the sound
propagation in a duct.1234 The main disadvantage is that
the 3D methods have high costs in both time consumption
as well as the computational resources demand, especially
for high frequency cases.

This paper concerns small amplitude sound propagation
in axisymmetric duct flows. The three-dimensional lin-
earized Euler equations in a cylindrical coordinate system
(x, r, φ) can be chosen to describe this problem. How-
ever, under the assumption of an axisymmetric mean flow
and axisymmetric acoustic boundary conditions, the three-
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dimensional fluctuating quantities can be decomposed into
a Fourier series in the azimuthal direction. This yields a
system of independent two-dimensional(x, r) differential
equations for each azimuthal modem of the fluctuations.
Since tone noise in the inlet of aircraft engines is generally
dominated by only a few components at the blade passing
frequency and its harmonics, it is computationally much
more efficient to treat these few two-dimensional Fourier
components rather than to solve the full three-dimensional
system. In fact, the Fourier decomposition technique has
found various applications in axisymmetric duct acous-
tics. For example, it was employed in the Finite Element
Method (FEM) of Eversman, etc.5 as well as the multiple-
scales (MS) method of Rienstra.6

In this paper, a 2.5D CAA approach is given, which is
numerically based on our previous 2D CAA procedure.7

This procedure is firstly validated in comparison with the
analytical solutions in a circular and an annular duct flow.
Furthermore some numerical results are given for an aero-
engine inlet duct geometry with flow and compared with
the results of the FEM and MS methods.8 Finally a turning
plane case is simulated and analyzed.
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MATHEMATICAL MODEL

Concerning small amplitude sound wave propagation in
a cylindrical duct with subsonic inviscous mean flow, the
starting point to derive the 2.5D nondimensionless govern-
ing equations are the linearized 3D Euler equations (LEE),
as shown below.
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∂ r

+
1
r

(
w′ + W̄

%′

%̄

) ∂ Ū
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The connection of pressure and density is based on the
isentropic law:

p′ = γ
p̄

%̄
%′ (5)

The local values of the mean flow field are marked by
a bar and the sound field by a prime. The length scales
are nondimensionalized by the typical radius of the duct,
the velocity components by the far field speed of sound,
the density by the far field density and the pressure by the

product of squared far field speed of sound and density.
The nondimensionalization is consolidated in the follow-
ing table 1.

Table 1 Nondimensionalization

definition nondimensianal quantity reference

length x, r R

velocity u′, v′, w′, Ū , V̄ , W̄ a∞
time t R

a∞
density %′, %̄ %∞
pressure p′, p̄ %∞ a2

r

Considering an axisymmetric duct geometry with ax-
isymmetric mean flow, the dependency of the sound field
on the circumferential coordinateφ is described analyti-
cally, e.g. for the pressure:

p′(t, x, r, φ) = p′m(t, x, r) e−i mφ (6)

Now a Fourier series decomposition of the differential
equations for the sound field is employed in the azimuthal
direction.

∫ 2π

0

∞∑
m=−∞

θm(x, r, t) e−i mφ ei kφ dφ = 0 (7)

Whereinθ denotes the rewritten complex differential equa-
tion which is independent ofφ.

To take advantage of this approach, it is assumed that
only a finite number of azimuthal modes are of interest for
the problem, therefore the summation will not approach
to infinity. In this case the relations of orthogonality for
the products of the complex exponential function lead to
a decoupled set of equations for each azimuthal mode.
All these equations for all azimuthal modes together de-
scribe the complete 3D sound field, hence this formulation
is called 2.5D. This means, that the azimuthal modes have
to be computed one by one and then can be merged to a 3D
sound field.

Based on the assumptions made above and additionally
restricted to a mean flow without swirl (̄W = 0), the 2.5D
governing equations for a single mode can be derived and
written as:
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∂ r
+

1
%̄

∂ p′m
∂ x

= 0
(9)

∂ v′m
∂ t

+ Ū
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The closing equation based on the isentropic law connects
the complex pressure fluctuation to complex density fluc-
tuation:

p′m = γ
p̄

%̄
%′m (12)

In summary, the resulting method consists of the following
three steps:

• Fourier decomposition of the 3D source into az-
imuthal modes

• CAA computation of the sound propagation for each
mode

• reconstruction of the computed solutions to a 3D
sound field with the assumed dependency ofmφ

NUMERICAL ALGORITHM

DISCRETIZATION SCHEME

A 2D CAA code7 is extended to solve the 2.5D equa-
tions, Eq. (8)∼Eq. (12). A Dispersion-Relation-Preserving
(DRP) scheme9 is employed for space discretization. The
solution is advanced in time by a Low-Dissipation and
Low-Dispersion Runge-Kutta (LDDRK) scheme10 in the
2N storage form.11 In order to obtain high quality nu-
merical solutions selective artificial damping is adopted
as a background damping to eliminate short wavelength
spurious waves.12 This damping is also employed around
special points, where the grid is stretched or the bound-
ary condition is varying. This is especially crucial for the
points around the spinners tip where the spinners inner
hard wall meets the axis.

BOUNDARY CONDITIONS

Different boundary region and flow physics require ap-
propriate boundary conditions (BCs), respectively. De-
tailed descriptions are introduced as below (see Fig. 1 and
Fig. 4):

Inflow Boundary

In this paper, we focus on upstream duct acoustic modes
propagation in a subsonic mean flow. There are no entropy
wave and vorticity wave incident upon the inflow boundary
region except acoustic wave. For simplification, a Newto-
nian cooling/friction based damping layer buffer zone is
introduced at the inflow boundary region. This idea has
ever been used as a simple nonreflective BCs.1314 The
basic governing equation can be written in the following
form:

∂ θ

∂ t
+ R−1

d (x)(θ − θ0) = k(θ) (13)

whereθ denotes the vector of dependent variables, and the
subscript 0 indicates the imposed basic states (i.e., speci-
fied incoming wave).

The basic philosophy is to absorb all the incoming dis-
turbances into zero in the buffer zone before they reach to
the outer boundary, such as settingθ0 = 0. This leads to a
nonreflective inflow boundary.

Sound Source Boundary

Assuming an uniform mean flow in the source region, the
incoming sound source is prescribed at three grid lines in
an additional straight annular duct based on the following
formula:
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Notation:

• Jm –mth order Bessel function of the first kind,
Ym – Neumann function

• The ratio ofN andM is given by the mode number
(m,n) and the nondimensional inner radiusri as fol-
lows:

M

N
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• The upstream wave numberkx in x-direction is then
given by the mean flow Mach numberMx:
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In general the sound source should also permit the re-
flected wave from an open end or a turning plane to prop-
agate out without reflection. To serve this role, a transition
zone from the source to the interior domain is introduced
for forcing the numerical solutions to the analytical sound
sources. Here we still follow the idea of Newtonian cool-
ing/friction damping layer as mentioned above. Butθ0 is
set to the analytical sound source solutions. In this way,
the reflected waves from the interior domain are forced to
the analytical sound source gradually when they reach the
sound source boundary.

Solid Wall Boundary

At the solid surface a zero normal velocity condition is
used to formulate a hard wall BC for the linear disturbance
equations. However, with high order governing equations,
the number of boundary conditions required for an unique
solution is large. Hence along the curvilinear solid walls,
a slip boundary condition with ghost points inside the wall
is imposed.15

Axisymmetric Boundary

For the 2.5D approach a special axial boundary condition
is needed. Actually it is not axisymmetric anymore, but the
quantities at the lines below the symmetry line are easily
obtainable from the assumed dependency onm, only the
mode numberm is needed. Insertingφ = π below the
symmetry line one obtains the coefficientRe{e−im π} =
(−1)m for the mirrored points below the axis.

For the velocity components this boundary condition
has to be formulated in the coordinate system that is used
above the axis. Hence it is not enough to insertφ = π,
also the sign has to be changed for thev′ andw′ velocity
component below the axis. The axisymmetric boundary
conditions can be expressed as:

p′(−r) = (−1)m p′(r) (14)

%′(−r) = (−1)m %′(r) (15)

u′(−r) = (−1)m u′(r) (16)

v′(−r) = −(−1)m v′(r) (17)

w′(−r) = −(−1)m w′(r) (18)

Another problem is the singularity of the cylindrical co-
ordinates at the axis (forr → 0). The partial differential
equations contain parts ofp′, %′ and(v′ − imw′), which
are divided byr.

From physics is clear, that none of the ratios can ap-
proach to infinity, hence this singularity must be discussed
for each mode by it’s special physics. The axisymmet-
ric mean flow has no component orthogonal to the axis at

Table 2 Singularity treatment (r → 0) for different az-
imuthal modes

m
i mp′m

r
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r
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2 ∂ i 2p′m
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∂ r 6= 0
i 2p′m = 0 v′m = w′m = 0

m > 2 ∂ i mp′m
∂ r = 0 ∂ v′m−i mw′m

∂ r = 0

the singularity. The axially symmetrical subsonic mean
flow even forcesV̄ to vanish faster thenr, therefore the
terms 1

r V̄ %′m and 1
r V̄ w′m are zero at the axis. Only two

terms remain to be considered. A simple way is to approx-
imate1/r by ∂/∂r. This must be discussed for different
azimuthal modes.

For them = 1 mode the value of the velocity com-
ponents is non-zero at the singularity. The real part ofv′

and the imaginary part ofw′ describe the same velocity
component, but the direction is reverse. To avoid numeri-
cal trouble, this derivative should be neglected form = 1.
The only part that must be replaced by its derivative is the
pressure divided byr. If the value of the quantity to be
divided byr is zero at the axis, it can be repaced by the
derivative in terms ofr.

Them = 0 andm = 2 modes are treated in the same
manner, omitting any part of the equation which is not nec-
essarily to be divided byr, because it has to be zero, or it’s
limitation has to be zero. Higher modes are always behav-
ing like themth order Bessel function of the first kind at
the axis. This special treatment of each modem are shown
in table 2.

RESULTS AND DISCUSSION

VALIDATION BY HARD WALLED CIRCULAR

AND ANNULAR DUCTS

The CAA procedure is firstly validated by a straight cir-
cular and a straight annular hard walled infinite duct
with acoustic modes propagation against subsonic uniform
mean flows. A sketch of the arrangement of boundary con-
ditions for a circular geometry is described in Fig.1. For
the annular duct case, the axisymmetric boundary condi-
tion is replaced by the solid wall boundary condition. In
both cases, the sound sources are excited against uniform
mean flow withMa = −0.5. Since the cross section and
mean flow are constant for both validation cases, there are
no reflection waves from the inflow regions. Hence the nu-
merical results can be compared with analytical upstream
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Figure 1 Boundary conditions for a circular duct.

Figure 2 Instantaneous pressure contours in a circular duct,
m=6, n=1, ω=10, Ma=−0.5.

wave solutions.

In the circular duct case, a uniform grid with∆x =
∆r = 1/32 is distributed in the interior domain along both
the x− andr− directions. The grids are stretched in the
x−direction in the buffer zone. The total number of grid
points used in the computation is120× 37. Fig.2 give the
comparison between numerical and analytical solutions for
m = 6, n = 1, ω = 10. There is a good agreement of the
numerical and the analytical results.

For the annular duct case, the outer wall radius isr2 = 1
whereas the inner wall radius isr1 = 0.42356. Uniform
grids are distributed along both thex andr directions in the
interior domain. The grid is stretched in thex−direction
to obtain a longer buffer zone at low computational costs.
The total grid number is120. The comparison between
CAA and analytical solutions atm = 10, n = 1, ω = 16
is shown in Fig.3. Again the numerical results agree well
with the analytical solutions.

ACOUSTIC DUCT MODE PROPAGATION IN AN

AXISYMMETRIC AERO-ENGINE DUCT INLET

For furtherly showing the capability of the 2.5D CAA pro-
cedure, an axisymmetric inlet with aero-engine like geom-
etry from the paper of Rienstra & Eversman8 is selected

Figure 3 Instantaneous pressure contours in an annular
duct, m=10, n=1, ω=10, Ma=−0.5.

for benchmarking. The outer and inner wall radiusr2 and
r1 are described by

r2(x) = 1− 0.18453x′2 + 0.10158
e−11(1−x′) − e−11

1− e−11
(19)

r1(x) = max
h
0, 0.64212− (0.04777 + 0.98234x′2)

1
2

i
(20)

wherex′ = x/L, L = 1.86393, r1(0) = 0.42356, spinner
tip atx=1.13547.

A sketch inlet geometry together with the prescribed
boundary conditions for the CAA simulation is depicted
in Fig.4. Body fitted grids are generated with451 × 151
points in x and r direction, respectively. In addition a
buffer zone is introduced fromx = 1.86393 to 3.0 to ab-
sorb incoming disturbances. For reducing computation
time, the domain was split into evenly distributed multi-
blocks for parallel computations.

Figure 4 Boundary conditions for a generic aero-engine inlet
geometry

Mean Flow Field

The mean flow field, the geometry, as well as the bound-
ary conditions are assumed to be axisymmetric for this test
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Figure 5 Normalized mean flow contours, CFD Euler solu-
tion, Ma(x=0)=−0.5. Top down: normalized pressure, and
the velocity componentsŪ and V̄ (White lines mark block
borders of the acoustic grid for parallel processing)

case. The mean flow is assumed two-dimensional, so that
there is no swirling component in the mean flow (W̄ = 0).
A low order CFD Euler solution was used as the basing
mean flow for the computation of sound propagation as
shown in Fig.5.

Because of different requirements for CFD and CAA
calculations both procedures need different grids. This re-
quires an interpolation of the mean flow field from the CFD
grid to the CAA grid. This routine was provided by DLR.16

It can be seen clearly that the mean flow varies in both ra-
dial and axial directions. This is different from the quasi
one-dimensional potential mean flow used in the FEM and
MS computations.8 Since the analytical sound source re-
quires a uniform mean flow, this difference results in the
inconsistence at the source boundary region in the CAA
computations. For this reason, unsmoothed numerical so-
lutions should be expected to be observed in the current
numerical results. This situation can be alleviated through

the introduction of a long staight annular duct transition
zone from the sound source plane to the section of variable
area. But all the results presented below were just cal-
culated based on a non-uniform mean flow, in which the
sound source is located atx=0 plane.

Acoustic Field

Firstly, the numerical results form = 10, n = 1, ω = 16
without mean flow case is given in Fig.6 and compared
with the solutions of FEM and MS methods.8 The main
pattern of the CAA results agree rather well with the FEM
and MS solutions. However, the CAA solutions are much
more close to the FEM solutions. The main reason is that
both the CAA and FEM numerical methods permit the
propagation of many modes and scattering is part of the
numerical solutions. While the MS method assumes that a
single mode does not scatter into other modes in the slowly
varying duct. The difference between the CAA and FEM
solutions near the boundary region can be attributed to the
different treatment of boundary conditions.
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Figure 6 Normalized pressure contours (Ma = 0, m =

10, n=1, ω=16), Top down: CAA, FEM, MS

For the same case, but with mean flow atMa = −0.5,
Fig.7 gives the results (m = 10, n = 1, ω = 16). The
results show a good agreement between CAA and FEM,
as well as between CAA and MS. Some visible wiggles
in the CAA and FEM solutions are probably due to the
inherent reflection from the lip region and inlet plane. The
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Figure 7 Normalized pressure contours (Ma = −0.5, m =

10, n=1, ω=16), Top down: CAA, FEM, MS

MS and FEM show more smooth results in the spinner and
near source inner wall regions. This difference can be the
result of high gradient mean flows in these regions, see
Fig. 5 while FEM and MS solutions were based on quasi-
one dimensional mean flows.

For high frequency cases (Ma =−0.5, m = 10, n = 1
andω = 50), many radial modes are cut on, see the com-
parison results in Fig. 8. There is interference with higher
radial modes sincen ≤ 11 is cut on for this case. Although
the general agreement is good, wiggles can be observed in
the source region of CAA solutions. This can be partly due
to the inconsistence of the uniform mean flow assumption
of the sound source with the radially varying Euler mean
flow used in CAA computations.

For higher azimuthal mode cases ofm = 20 and
m = 30, the comparisons are shown in Fig. 9 and Fig. 10,
respectively. The numerical solutions(CAA, FEM) agree
better with the MS solutions comparing with lower az-
imuthal mode case ofm = 10. However, the wiggles in
the CAA and FEM solutions are still visible because of the
shift to highern modes. Unsmoothed wiggles can also be
found in the source region of CAA solutions due to radi-
ally and axially nonuniform Euler mean flow in the source
region.

For higher radial mode cases, two numerical results of
instantaneous pressure contours are shown in Fig. 11 for
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Figure 8 Normalized pressure contours (Ma = −0.5, m =

10, n = 1, ω = 50), Top down: CAA, FEM, MS
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Figure 9 Normalized pressure contours (Ma = −0.5, m =

20, n=1, ω=50), Top down: CAA, FEM, MS

(m = 10, n = 12, ω = 50) and (m = 20, n = 5, ω = 50).
The inteference structure and reflection from the solid wall
can be clearly observed.

To furtherly show the capability, a cut-on and cut-off
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Figure 10 Normalized pressure contours (Ma =−0.5, m =

30, n=1, ω=50), Top down: CAA, FEM, MS

Figure 11 Instantaneous pressure contours forMa =−0.5,
Top: (m = 10, n = 12, ω = 50), Lower: (m = 20, n = 5, ω =

50)

turning plane case is calculated by the CAA approach.
Fig. 12 gives the normalized pressure contours for a spin-
ning modeMa = −0.5,m = +10, n = 1, ω = 11.129.
The reconstructed 3D pressure contours on the casing sur-
face is shown in Fig. 13. It can be found that the calculated
turning plane is located aroundx ≈ 0.63 plane. But the

turning plane is difficult to detect near the spinner wall
region. The main reason is that the cut-on and cut-off phe-
nomenon is very sensitive to the related mean flow field.
Differently form MS and FEM, CAA is based on a Euler
based mean flow field, hence the CAA calculated transition
plane can not be directly compared with that computed by
MS and FEM if they will be available in the future. Fig. 14
further gives the sound pressure level (SPL, dB) distribu-
tion at four axial planes atx = 0.5, 1.0, 1.5, 1.8, for an
assumed peak sound source amplitudepmax = 1000 Pa.
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Figure 12 Normalized pressure contours for a cut-on and
cut-off transition case (Ma = −0.5, m = 10, n = 1, ω =

11.129). The turning plane is situated aroundx=0.63.

Figure 13 3D reconstructed pressure contours for the cut-on
and cut-off transition case (Ma=−0.5, m=+10, n=1, ω=

11.129).

8 OF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



-120 -80 -40 0 40 80 120 160
SPL [dB]

0

0.2

0.4

0.6

0.8

1
r 

[m
]

x=0.5m

-120 -80 -40 0 40 80 120 160
SPL [dB]

0

0.2

0.4

0.6

0.8

1

r 
[m

]

x=1.0m

-120 -80 -40 0 40 80 120 160
SPL [dB]

0

0.2

0.4

0.6

0.8

1

r 
[m

]

x=1.5m

-120 -80 -40 0 40 80 120 160
SPL [dB]

0

0.2

0.4

0.6

0.8

1

r 
[m

]

x=1.8m

Figure 14 SPL distribution at 4 axial planes for the cut-on
and cut-off transition case (Ma =−0.5, m = 10, n = 1, ω =

11.129).

CONCLUSION

A 2.5D CAA approach is proposed to simulate sound wave
propagation in axisymmetric duct flows. The main idea is
to calculate each azimuthal mode using Fouries decompo-
sition technique in circumferiential direction. The opti-
mized high-order DRP finite-difference scheme was em-
ployed for spatial discretization and the a low-dissipation
and low-dispersion Runge-Kutta scheme was applied for
time integration. Numerical validation examples are given
for a straight circular duct and a straight annular duct con-
taining uniform subsonic mean flows. For checking the
capability of the 2.5D CAA approch, the acoustic propa-
gation in an aero-engine geometry duct inlet is simulated
and compared with the FEM and MS solutions. It is shown
that the CAA solutions agree reasonably well with the so-
lutions by FEM and MS methods. The main advantages
of the proposed 2.5D CAA approach are twofold. One is
that this approach has potential to account for more mean
flow effects on sound wave propagation compared with
the potential mean flow assumed in the current FEM and
MS methods. Another advantage is that it is very efficient
compared with fully 3D computations for an axisymmetric
duct flows. However, fully 3D methods are still desirable
for those fully 3D cases, such as scarfed inlets.
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