Numerische Analyse der hydrodynamischen Stabilität in der Schmelze bei der Cz-Züchtung oxidischer Kristalle

In Zusammenarbeit mit:

H. Wilke, Mentor, Leibniz Institute of Crystal GrowthK. A. Cliffe, University of Nottingham, UKA. Yu. Gelfgat, Tel-Aviv University, Israel

OUTLINE

- Motivation
- Fundamentals of crystal growth
- Introduction into basics of stability analysis / bifurcations
- \bullet Validating the code / software development collaboration with TAU / UoN
- Bifurcation analysis in crystal growth (for the first time in IKZ)
- Measurement of important material properties
- Application to the Cz-oxide growth technology
- Final remarks

Motivation

Rare-earth scandate crystals (ReScO_3 , Re=Y, La, Pr, Nd, <u>Sm</u>, Gd, Tb <u>Dy</u>, Ho, Er, Tm and Lu) showing spiral growth. These crystals are excellent candidates for substrates of ferroelectric materials (e.g. non-volatile FeRAM) or alternative gate high-K-dielectrics for MOSFETs. The Czochralski technology has been used.

Motivation

- The phenomenon of spiral crystal growth is a still unsolved problem
- There is a deep impact with commercial requirements for special oxide crystals
- The cork screw instability is a typical example of 2D symmetry breaking
- A stability analysis can be performed in terms of fluid flow interaction
- For the first time in IKZ bifurcation analysis has been used
- Experimental investigation of material properties used for numerics
- Characterizing the solution type multiple solutions
- Hypothesis: Heat and momentum changes initiate the spiral growth

Fundamentals of crystal growth (1)

Since 1950's the growth of crystals is applied industrially using different methods

- From gas phase epitaxially (e.g. chemical vapour deposition CVD, MOCVD)
- From chemical solution (e.g. top seeded solution growth TSSG)
- From the melt (e.g. Bridgman, Czochralski(Cz) or floating zone(FZ) method)
- Best quality bulk crystals are achieved with Cz and FZ methods

Fundamentals of Cz crystal growth (1)

member of the

<mark>Leibniz</mark> Gemeinschaft

Fundamentals of Cz crystal growth (2)

Sketch of first three principle steps in a Cz crystal growth run

member of the

Gemeinschaft

Fundamentals of Cz crystal growth (3)

Sketch of last three principle steps in a Cz crystal growth run

Fundamentals of Cz crystal growth (4)

Cz melt flow mechanisms

member of the

<mark>Leibniz</mark> Gemeinschaft

Fundamentals of crystal growth – heat and mass transfer

• heat transfer

conduction $q = -\kappa \nabla T$ convection $\chi \nabla^2 T - \vec{v} \cdot \nabla T = 0$

• fluid motion

Navier-Stokes equations

Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$
$$\nabla \cdot \vec{v} = 0$$

Marangoni convection

$$\mu_1 \frac{\partial u_1}{\partial z} - \mu_2 \frac{\partial u_2}{\partial z} = \frac{\partial \gamma}{\partial x} = \frac{\partial \gamma}{\partial T} \frac{\partial T}{\partial x}$$

Radiation
$$q = \sigma \epsilon (T^4 - T_a^4)$$

Institute for Crystal Growth – Berlin

• parameters

FEM-Software (ENTWIFE)

>>ENTWIFE <further data>

>>MODEL DATA <further data>

>>SOLVER DATA <further data>

>>OUTPUT DATA <further data>

>>STOP

further advantages:

- symbolic equation input via interface to MATHEMATICA or MAPLE
- Newton-Raphson solver convergence O(2)
- Interface to a parallel sparse direct solver (MUMPS), which allows for a simulation on a supercomputer (e.g. HLRN)
- Continuation and bifurcation algorithms (Hopf-bifurcation shows a superconvergence O(4))

What is bifurcation / path following good for?

Nonlinear dynamics: there are no fundamental solutions

- No a priori knowledge about the solution structure
- Dynamic systems often show a complex solution manifold and ambiguity
- Classical direct numerical simulation can miss important solution branches of the non linear dynamic system

The main questions are:

-What is the qualitative solution behaviour of the system?

-Which and how many different solution sets do occur?

-Which of them are un/stable?

-What is the bahaviour of different solution

sets while changing the control parameter(s)

of the system?

Bifurcation: appearence and disappearence of different solution sets

12 of 32

What is bifurcation / path following good for?

Nonlinear dynamics: there are no fundamental solutions

- No a priori knowledge about the solution structure
- Dynamic systems often show a complex solution manifold and ambiguity
- Classical direct numerical simulation can miss important solution branches of the non linear dynamic system

The main questions are:

-What is the qualitative solution behaviour of the system?

- -Which and how many different solution sets do occur?
- -Which of them are un/stable?

-What is the bahaviour of different solution sets while changing the control parameter(s) of the system?

Bifurcation: appearence and disappearence of different solution sets

Path following: example of multiple solutions

Explanation by graphical examples (2)

Institute for Crystal Growth – Berlin

Validating numerical code – used model

Sketch of the Czochralski crystal growth technology

member of the

Gemeinschaft

= v = 0, T

n

Cylindrical coordinates scaling:

$$r := \frac{r}{R} \quad z := \frac{z}{R} \quad u := \frac{u R}{v} \quad T := \frac{T - T_m}{T_c - T_m} = \frac{T - T_m}{\Delta T}$$

Parameters: $Gr = \frac{g \beta \Delta T R^3}{v^2}$, $Ma = \frac{\frac{d \sigma}{dT} \Delta T R}{\mu v}$, $Pr = \frac{v}{\kappa}$ $R e = \frac{\omega R^2}{v}$, $Bi = \frac{h R}{\kappa}$, $Ar = \frac{H}{R}$ Material properties (NaNO₃) and geometry*:

$$\begin{array}{lll} Pr=9.2 & Bi=0.1 \\ H=0.92 \\ Gr=190476.0 \ \Delta T & R=1.0 \\ Ma=Mn/Pr=585.71 \ \Delta T & R_{crucible}=3.8 \ cm \\ (* \ Schwabe \ et \ al., \ JCG \ 265 \ (2004), \ p. \ 440) \end{array}$$

Institute for Crystal Growth - Berlin

Stability diagrams and their grid dependance

Stability diagrams of NaNO₃-melt flow in a Czochralski crucible (see also Gelfgat et al., J. Crystal Growth 275 (2005) e7)

member of the

Gemeinschaft

Path following

Institute for Crystal Growth – Berlin

Continuation diagram for Parameter Re

Rotation direction change (DyScO₃)

total kinetic energy norm $E_{kin} = 2\pi \iint_{0}^{HR} (u^2 + v^2 + w^2) r dr dz$

r

member of the

Gemeinschaft

Multiplicity of solution in 2D

Continuation diagrams for parameter Re

member of the Berlin Leibniz Gemeinschaft

Comparison of continuation diagrams

Continuation diagrams for control parameter Re with $\Delta T=0.27$ K

Gemeinschaft

Transient simulations for different Re and constant $\Delta T=0.27K$

Institute for Crystal Growth – Berlin

member of the

20 of 32

Phase plots for different Re close to the solid/liquid interface

Institute for Crystal Growth - Berlin

Phase portraits for $\Delta T = 0.27$ K at v, T(0.13, 0.8) while varying Re

Measurement of important material properties

Which physical quantities / material properties are interesting?

sketch of the measurement setup

Institute for Crystal Growth – Berlin

member of the Use Cemeinschaft

Application to the Cz-oxide growth technology

Influence of the RF-heating configuration for different melt heights

member of the

<mark>Leibniz</mark> Gemeinschaft

Model problem and numerical method

magnetic stream function $\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \psi_B}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{r} \frac{\partial \psi_B}{\partial z} \right) = \mu J$ where $J = \begin{cases} J_0 \cos \omega t & \text{in the coil} \\ -\frac{\sigma_c}{r} \frac{\partial \psi_B}{\partial t} & \text{in the conductors} \end{cases}$

with
$$\psi_B = C(r, z)\cos(\omega t) + S(r, z)\sin(\omega t)$$

induced heat in metallic parts

$$Q = \frac{\sigma_c \omega^2}{2r^2} (C^2 + S^2)$$

heat and mass transfer

$$\rho \vec{V} \cdot \nabla \vec{v} = -\nabla p + \mu \nabla^2 \vec{v} + \rho \vec{g} (T - T_0) \beta$$
$$k \nabla^2 T_s + Q_s = 0 \qquad s = \text{solid regions}$$
$$\frac{k}{\rho c_p} \nabla^2 T - \vec{v} \cdot \nabla T = 0 \qquad \text{in melt and gas}$$

$\nabla \cdot \vec{v} = 0$

Institute for Crystal Growth – Berlin

thermocapillary convection

$$\mu_l \frac{\partial u_l}{\partial \hat{n}} - \mu_g \frac{\partial u_g}{\partial \hat{n}} = \frac{\partial \gamma}{\partial \hat{\tau}} = \frac{\partial \gamma}{\partial T} \frac{\partial T}{\partial \hat{\tau}}$$

parameters $Gr = \frac{g\beta T_m R^3}{\nu^2}$ $Pr = \frac{\nu}{\gamma}, \quad \chi = \frac{k}{\rho c_n}$ $Ma = \frac{\left|\frac{d\sigma}{dT}\right| T_m R}{T_m R}$ $Re = \frac{\omega R^2}{\omega}$ $Bi = \frac{h_i R}{\lambda}$ $Rad_i = \epsilon_i T^3 R / \lambda_i$ $Rad_l = \epsilon_l T^3 R / \lambda_l$

Influence of the RF-heating configuration for different melt heights (1)

member of the Gemeinschaft

.eibniz

Influence of the RF-heating configuration for different melt heights (2)

Different configurations of melt height and RF-coils

Melt isotherms and streamlines for different cases

Case 2

Case 3

Case 4

Institute for Crystal Growth - Berlin

Bifurcation analysis and continuation using DyScO₃ melt properties

Bifurcation analysis and continuation using DyScO₃ melt properties

total kinetic energy norm

$$E_{kin} = 2\pi \iint_{0}^{HR} \left(u^2 + v^2 + w^2 \right) r dr dz$$

member of the Cemeinschaft

Continuation for control parameter Re with fixed ΔT

Institute for Crystal Growth – Berlin

member of the

Leibniz Gemeinschaft

Continuation for control parameter ΔT with fixed Re

Institute for Crystal Growth - Berlin

member of the

Leibniz Gemeinschaft

Final remarks

- Code cross validation has been done
- There is a complicated fluid flow and heat transfer interaction
- Different types of instability are already possible in 2D
- Measuring important material properties of the DyScO₃ melt
- We are working with a model which is close to real crystal growth conditions, but:

Taking into account inner and wall-to-wall radiation and latent heat
Transition to a full 3D approach, i.e. steady state solution and/or stability analysis

- Multi parameter bifurcation analysis / path following is possible
- Stability analysis for more complex geometry
- It is possible to get knowledge about the complexity of the system and to review
- the influence and interplay of technologicaly adjustable parameters (pull rate, rotation rate, pressure, temperature)
 - Bifurcation and continuation techniques can help to get such information

Thank you very much for your attention.

